Skip to main content
Configure indexing using the DiskANN algorithm, which is designed for high-performance approximate nearest neighbor search on large-scale datasets. This is suitable for very large datasets that need to be stored on disk.

Samples

SELECT ai.create_vectorizer(
    'blog_posts'::regclass,
    indexing => ai.indexing_diskann(min_rows => 500000, storage_layout => 'memory_optimized'),
    -- other parameters...
);

Arguments

NameTypeDefaultRequiredDescription
min_rowsint100000The minimum number of rows before creating the index
storage_layouttext-Set to either memory_optimized or plain
num_neighborsint-Advanced DiskANN parameter
search_list_sizeint-Advanced DiskANN parameter
max_alphafloat8-Advanced DiskANN parameter
num_dimensionsint-Advanced DiskANN parameter
num_bits_per_dimensionint-Advanced DiskANN parameter
create_when_queue_emptybooleantrueCreate the index only after all of the embeddings have been generated

Returns

A JSON configuration object that you can use in ai.create_vectorizer.